For full credit show all your work. Put the writer's name in the margin next to the problem.

1) Divide $\left(3 x+2+2 x^{3}\right) \div(x-1)$ using algebraic long division.
2) Find, and simplify, a polynomial that has zeros of 3,2 , and 0 .

Let $\mathrm{f}(\mathrm{x})=\frac{1}{x+2}$ and $\mathrm{g}(\mathrm{x})=x^{2}+4 x+4$
5) Find $(f \circ g)(x)$.
7) Find $\frac{g(x)-g(x+h)}{h}$
6) Find $f(x) \cdot g(x)$.
2) Divide $\left(3 x^{4}-5 x^{2}+3\right) \div(x+2)$ using synthetic division.
4) Find all roots exactly for the polynomial $P(x)=x^{4}+2 x^{3}-2 x^{2}-6 x=3$.
8) Find a line perpendicular to
$y=4 x+3$ and passing through the point
(4, -7). Graph both and provide an equation for the new line in slope intercept form.

Solve the following equations:
9) $\frac{3 a-1}{a^{2}+4 a+4}-\frac{3}{a^{2}+2 a}=\frac{3}{a}$
10) Solve and, if possible, write your answer using both inequality notation and interval notation. $\sqrt{x^{2}}<3$
11) $\frac{2 x^{2}+7 x+3}{2 x^{2}-7 x-4}=1$
12) $\frac{t}{t+3}+\frac{4 t}{t-3}-\frac{18}{t^{2}-9}=1$
13) Find the center and radius of the circle
14) $\frac{6}{y+4}+1=\frac{5}{2 y+8}$
given by: $x^{2}+y^{2}-4 x-6 y=51$
15) $\frac{1}{b-5}-\frac{10}{b^{2}-25}=\frac{1}{b+5}$
16) $\frac{x-\frac{1}{x}}{1+\frac{1}{x}}=3$
17)) A rancher has 1200 feet of fencing to enclose two adjacent rectangular corrals (see figure).

Write the area A of the corrals as a function of x.
$A=$
Write the area function in standard form to find analytically the dimensions that will produce the maximum area. (Use A for $f(x)$.)
$x=$ \qquad

$$
y=
$$

\qquad

